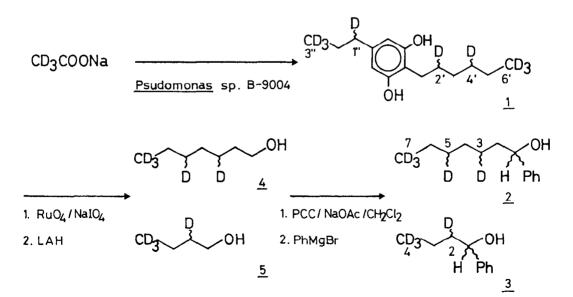
$Eu(fod)_3$ -SHIFTED ²H-NMR AS A PROBE OF CHIRALITY DUE TO DEUTERIUM SUBSTITUTION: STEREOSPECIFIC DEUTERIUM INCORPORATION INTO 2-<u>n</u>-HEXYL-5-<u>n</u>-PROPYLRESORCINOL, A POLYKETIDE PRODUCED BY <u>PSEUDOMONUS</u> SP. B-9004.¹

> Jun Furukawa[®], Shigeo Iwasaki and Shigenobu Okuda Institute of Applied Microbiology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.

Summary: Eu(fod)₃-shifted ²H-NMR of partially deuterated 15-n-hexylphenylcarbinol ($\underline{2}$) and 15-n-propylphenylcarbinol ($\underline{3}$) derivatized from biosynthetically deuterated 2-n-hexyl-5-n-propylresorcinol ($\underline{1}$) revealed a stereospecificity of deuterium incorporation into the side chains of $\underline{1}$.

Enzymatic method was succesfully applied in our laboratory to demonstrate stereospecific incorporation of deuterium from $[2-{}^{2}H_{2}]$ malonyl-CoA into fatty acid which was prepared in cell free system of fatty acid synthetase². In the present article, we employed a physico-chemical method³ for a determination of stereospecificity of deuterium incorporation⁴ from $[2-{}^{2}H_{3}]$ acetate into polyketide, 2-<u>n</u>-hexyl-5-<u>n</u>-propylresorcinol (<u>1</u>), by intact bacteria, <u>Pseudomonus</u> sp. B-9004, and found a higher stereospecificity than in the case of fatty acid².


<u>Pseudomonus</u> sp. B-9004 which was grown on a slant^{5,6} for 24 hours at 27°C was inoculated into a liquid medium⁷. The inoculated medium was shaken⁸ for 48 hours, then 2 ml aliquots of the content were seeded in the same liquid medium⁷ and these flasks were shaken⁸ for another 48 hours, at that time 100 mg of CD₃COONa in water was added into each flask. After additional 72 hours shaking⁸ the bacteria were collected by a centrifuge and were extracted with acetone then with chloform⁹ to give 3 gram of crude 2-<u>n</u>-hexyl-5-<u>n</u>-propylresorcinol (<u>1</u>) from mycelia of 10 litter fermentation. ²H-NMR measurement of the compound showed deuterium incorporation into side chains⁴.

The crude material was oxidized by $\text{RuO}_2 \cdot 2\text{H}_2 0$ -NaIO₄ in $\text{CH}_2 \text{Cl}_2 - \text{H}_2 0$ at room temperature as was indicated in <u>SCHEME 1</u>. Aromatic ring of the resorcinol derivative <u>1</u> (3 gram) was oxidized to give crude mixture (2 gram) contained heptanoic acid and butyric acid¹⁰. These acids originated from the side chains of <u>1</u> were added to excess LAH/Ether to reduce to corresponding

alcohols, n-heptanol (4) and n-butanol (5). These alcohols were oxidized to aldehydes by After completion of the reaction, the reaction mixture was directly PCC/NaOAc oxidation. loaded on a silica gel column to remove inorganics. After the solvent was carefully removed using a Vigreux column, resulted aldehydes mixture was added into excess amount of Alkylphenylcarbinols formed were separated by silica gel column PhMgBr in ether. chromatography to give n-hexylphenylcarbinol (2) (450 mg) and n-propylphenylcarbinol (3) (200 It should be noted that no loss of deuterium on C-2 in the course of the mg). derivatization of 5 into 3 was checked by GC-MS in a model experiment on $[2,3-^{2}H_{2}]$ pentadecanol. Alkylphenylcarbinols 2 and 3 obtained above were derivatized into their 1-(-)-menthoxycarbonyl esters, and the four 1-(-)-menthoxycarbonyl esters of 2 and 3 were separated by preparative GLC^{11,12}. LAH reduction of the separated esters gave corresponding optically active alkylphenylcarbinols 15-2, 1R-2, 1S-3 and 1R-3. Optical purity and absolute configuration of C-1 of these alcohols were checked by GLC of their $R_{-}(-)$ -menthoxycarbonyl esters¹² and by ¹H-NMR measurements of their R-(+)-MTPA esters¹³. Both of these methods gave the coincidental results¹⁴.

Because of the presence of assymmetry on C-1, methylene protons of these alcohols 2 and 3 became diastereotopic, and the diastereotopic non-equivalence was enhanced by the addition of $Eu(fod)_3$ to give well separated signals for four protons on C-2 and C-3. And the assignments of these four protons were made already by measuring ¹H-NMR spectra of stereoselectively deuterated compounds at various concentrations in the presence of $Eu(fod)_3$ in our previous work³. Considering chemical shift paralellism between ¹H- and ²H-NMR, $Eu(fod)_3$ -shifted ²H-NMR measurements of the alkylphenylcarbinols resolved concerning C-1 were expected to reveal deuterated position and stereochemistry of the deuteration of the alkyl chain.

SCHEME 1:

 ${\rm Eu}{\rm (fod)}_3$ -shifted ¹H- and ²H-NMR data of 1<u>S</u>-<u>2</u> and 1<u>S</u>-<u>3</u> were shown in <u>TABLE 1</u> and <u>2</u> in which deuterium content for each deuterated position was calculated by comparing integration of ²H-NMR signals of the deuterated alcohols with that of deutero-chloroform which exist in natural abundunce, 0.015 %, in "cold" chloroform which was used as the solvent for the ²H-NMR measurements(60 MHz, 5000 scans). From these data , it became clear that alkyl groups of the alkylphenylcarbinols <u>2</u> and <u>3</u> which were derived from the side chains of 2-<u>n</u>-hexyl-5-<u>n</u>-propylresorcinol (<u>1</u>) contained deuterium in H_{3<u>S</u>}, H₅ and H₇ of <u>2</u>, and H_{2<u>S</u>} and H₄ of <u>3</u> in the percentage indicated in FIGURE 1.

Consequently, deuterium incorporation from $[2-{}^{2}H_{3}]$ acetate into $2-\underline{n}-hexyl-5-\underline{n}-propylresorcinol$ (1) by the bacteria, Pseudomonus sp. B-9004, was summarized as follows.

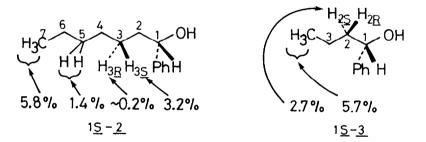
1) Deuterium were found on C-2', C-4', C-6', C-1" and C-3".

2) Absolute configuration of C-2' and C-1" were predominantly S.

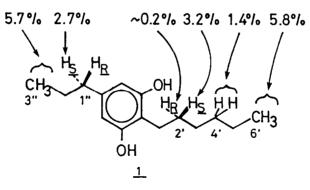
3) Deuterium content were calculated as in FIGURE 2.

<u>TABLE 1</u>: Eu(fod)₃-shifted ¹H- and ²H-NMR: 5.0 mg(26 µmol) of 1<u>S</u>-2 in the presence of 27.0 mg(26 µmol) of Eu(fod)₃ in 0.50 ml of CDCl₃ or CHCl₃ at room temperature.

	н _{2<u>R</u>}	н _{2<u>s</u>}	н _{з<u>к</u>}	^Н 3 <u>S</u>	H ₄	Н ₅	^H 6	H ₇
1 <u>————</u> H—NMR (400 MHz)	9.55 ppm	8.50	5.47	5.88	3.00	2.16	1.76	1.10
H-NMR	_	-	5.5	5.9	-	2.2	_	1.1
(<u>60 MHz</u>)			0.2%(0.16)	* 3.2%(0	.77)	1.4%(0.	76)	5.8%(4.78)


* Deuterium content (relative integration to $CDC1_3$ signal) for $H_{3\underline{R}}$ might be inaccurate because of low S/N value.

<u>TABLE 2</u>: Eu(fod)₃-shifted ¹H- and ²H-NMR: 3.0 mg(20 μ mol) of 1<u>S</u>-<u>3</u> in the presence of 10.4 mg(10 μ mol) of Eu(fod)₃ in 0.50 ml of CDCl₃ or CHCl₃ at room temperature.


	^H 2 <u>R</u>	^н 2 <u>s</u>	^Н з <u>к</u>	н _{з<u>s</u>}	^H 4
1_{H-NMR} (400 MHz)	5.60	1.97	3.38	3.62	1.70
H-NMR	_	5.1	_		1.7
(60 MHz)		2.7%(0.5	7)*		5.7%(3.58)
* Deuterium	content (re	lative integ	ration to CDC1	signal)	

* Deuterium content (relative integration to CDC1₃ signal)

FIGURE 1: Distribution and content(%) of deuterium in 15-2 and 15-3.

5264

Acknowledgements: The authors thank the Ministry of Education, Science and Culture of Japan for financial support of this work. We thank Dr. Kadoya, Dai-Ichi Pharmaceutical Co. Ltd., for his generous gift of <u>Pseudomonus</u> sp. B-9004 and his useful advice for fermentation of the bacteria.

REFERENCES AND NOTES

- 1) N. Kanda, N. Ishizaki, N. Inoue, M. Oshima, A. Handa and T. Kitahara, J. Antibiotics, <u>28</u>, 935 (1975).
- 2) K. Saito, A. Kawaguchi, Y. Seyama, T. Yamakawa and S. Okuda, J. Biochem., <u>90</u>, 1697 (1981).
- 3) J. Furukawa, S. Iwasaki and S. Okuda, Tetr. Lett., the previous report in this volume.
- 4) U. Sankawa, H. Shimada, and K. Yamasaki, Chem. Pharm. Bull., 29 3061 (1981).
- 5) The medium contained 1 g meat extract, 1 g polypepton, 0.2 \overline{g} NaCl and 1.5 g agar in 100 ml H₂O. This was adjusted to pH 7.0 before sterilization.
- 6) <u>Pseudomonus</u> sp. B-9004 was grown on the slant for 24 hours at 27^oC and stocked at room temperature. Inoculation on to a new slant every one month was recommended to keep the strain.
- 7) The solution contained 30 g sucrose, 3 g polypepton, 0.04 g NaNO₃, 0.02 g K_2HPO_4 , 0.5 g MgSO₄.7H₂O, 0.01 g KCl, 5 mg FeSO₄ and 8 g CaCO₃ per litter. The medium was adjusted to pH 7.0 before sterilization.
- 8) The bacteria were cultured in 500 ml Erlenmyer flasks each contained 150 ml medium on a rotary shaker at 27° C.
- 9) Only small amount of 2-n-hexyl-5-n-propylresorcinol was detected in the broth.
- 10) The formation of these acids were followed by GLC: SP-1000, 1.5%, 1.0 m, 180°C.
- 11) 15% EGS, 1.5 m x 4 mmID was used for the preparative purpose.
- 12) J. W. Westley and B. Halpern, J. Org. Chem., <u>33</u>, 3978 (1968).
- 13) F. Yasuhara and S. Yamaguchi, Tetr. Lett., <u>21</u>, 2827 (1980).
- 14) Data for 1S-2, 1R-2, 1S-3 and 1R-3 were listed in the table below.

	Chemical shift(δ , CDCl ₃) of <u>R</u> -(+)-MTPA ester		Retention time(min) of R-(-)-methoxycarbonyl deriv.,		
	-och ₃	-H ₁	of R-(-)-methoxycarbonyl deriv., 5% EGS, 1.5 m, 160°C		
1S-2	3.53	5.87	16.8		
1R-2	3.45	5,95	18.7		
1S-3	3.54	5.89	8.2		
$\frac{1S-2}{1R-2}$ $1S-3$ $1R-3$	3.44	5,97	9.1		